Hierarchical fractional-step approximations and parallel kinetic Monte Carlo algorithms

نویسندگان

  • Giorgos Arampatzis
  • Markos A. Katsoulakis
  • Petr Plechác
  • Michela Taufer
  • Lifan Xu
چکیده

We present a mathematical framework for constructing and analyzing parallel algorithms for lattice kinetic Monte Carlo (KMC) simulations. The resulting algorithms have the capacity to simulate a wide range of spatio-temporal scales in spatially distributed, non-equilibrium physiochemical processes with complex chemistry and transport micro-mechanisms. Rather than focusing on constructing exactly the stochastic trajectories, our approach relies on approximating the evolution of observables, such as density, coverage, correlations and so on. More specifically, we develop a spatial domain decomposition of the Markov operator (generator) that describes the evolution of all observables according to the kinetic Monte Carlo algorithm. This domain decomposition corresponds to a decomposition of the Markov generator into a hierarchy of operators and can be tailored to specific hierarchical parallel architectures such as multi-core processors or clusters of Graphical Processing Units (GPUs). Based on this operator decomposition, we formulate parallel Fractional step kinetic Monte Carlo algorithms by employing the Trotter Theorem and its randomized variants; these schemes, (a) are partially asynchronous on each fractional step time-window, and (b) are characterized by their communication schedule between processors. The proposed mathematical framework allows us to rigorously justify the numerical and statistical consistency of the proposed algorithms, showing the convergence of our approximating schemes to the original serial KMC. The approach also provides a systematic evaluation of different processor communicating schedules. We carry out a detailed benchmarking of the parallel KMC schemes using available exact solutions, for example, in Isingtype systems and we demonstrate the capabilities of the method to simulate complex spatially distributed reactions at very large scales on GPUs. Finally, we discuss work load balancing between processors and propose a re-balancing scheme based on probabilistic mass transport methods. 2012 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACMAC’s PrePrint Repository Hierarchical fractional-step approximations and parallel kinetic Monte Carlo algorithms

We present a mathematical framework for constructing and analyzing parallel algorithms for lattice Kinetic Monte Carlo (KMC) simulations. The resulting algorithms have the capacity to simulate a wide range of spatio-temporal scales in spatially distributed, non-equilibrium physiochemical processes with complex chemistry and transport micro-mechanisms. The algorithms can be tailored to specific ...

متن کامل

Kinetic Monte Carlo Simulation of Oxalic Acid Ozonationover Lanthanum-based Perovskitesas Catalysts

Kinetic Monte Carlo simulation was applied to investigation of kinetics and mechanism of oxalic acid degradation by direct and heterogeneous catalytic ozonation. La-containing perovskites including LaFeO3, LaNiO3, LaCoO3 and LaMnO3 was studied as catalyst for oxalic acid ozonation. The reaction kinetic mechanisms of each abovementioned catalytic systems has been achieved. The rate constants val...

متن کامل

Kinetic Monte Carlo Study of Biodiesel Production through Transesterification of Brassica Carinata Oil

In the present study, the kinetics of biodiesel production through transesterification of Brassica carinata oil with methanol in the presence of Potassium Hydroxide is investigated by kinetic Monte Carlo simulation. The obtained results from simulation agree qualitatively with the existing experimental data. The kinetics data for each step of suggested mechanism are confirmed by simulation. By ...

متن کامل

Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models

Inference for Dirichlet process hierarchical models is typically performed using Markov chain Monte Carlo methods, which can be roughly categorized into marginal and conditional methods. The former integrate out analytically the infinite-dimensional component of the hierarchical model and sample from the marginal distribution of the remaining variables using the Gibbs sampler. Conditional metho...

متن کامل

Markov chain Monte Carlo methods for Dirichlet process hierarchical model

Inference for Dirichlet process hierarchical models is typically performed using Markov chain Monte Carlo methods, which can be roughly categorised into marginal and conditional methods. The former integrate out analytically the infinite-dimensional component of the hierarchical model and sample from the marginal distribution of the remaining variables using the Gibbs sampler. Conditional metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2012